

INSTALLATION, OPERATION & MAINTENANCE INSTRUCTIONS

1455 Kleppe Lane *Sparks, NV 89431-6467 *(775) 359-4712 *Fax (775) 359-7424

HAWS AG *Bachweg 3 *CH-3401 Burgdorf * Switzerland

Haws Mfg. Pte Lt. *2A Sungei Kadet Drive *Singapore 729554

Avlis-Avenido Senador, Testonio Vilela *505 Jardim Aeroporto * Itu, S.P. 13304-550 *Brasil

E-mail: haws@hawsco.com * website: www.hawsco.com

Model 9202-Tempered Water Blending System

NOTE TO INSTALLER: Please leave this information with the Maintenance Department.

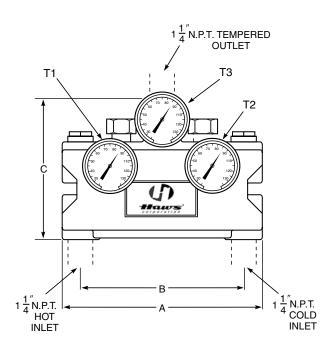
LIMITED WARRANTY

HAWS[®] warrants that all of its products are guaranteed against defective material or poor workmanship for a period of **one year from date of shipment**. HAWS liability under this warranty shall be discharged by furnishing without charge F.O.B. HAWS Factory any goods, or part thereof, which shall appear to the Company upon inspection to be of defective material or not of first class workmanship, provided that claim is made in writing to company within a reasonable period after receipt of the product. Where claims for defects are made, the defective part or parts shall be delivered to the Company, prepaid, for inspection. HAWS will not be liable for the cost of repairs, alterations or replacements, or for any expense connected therewith made by the owner or his agents, except upon written authority from HAWS, Sparks, Nevada. HAWS will not be liable for any damages caused by defective materials or poor workmanship, except for replacements, as provided above. Buyer agrees that Haws has made no other warranties either expressed or implied in addition to those above stated, except that of title with respect to any of the products or equipment sold hereunder and that HAWS shall not be liable for general, special, or consequential damages claimed to arise under the contract of sale.

The emergency equipment manufactured by HAWS is warranted to function if installation and maintenance instructions provided are adhered to. The units also must be used for the purpose, which they were intended. This product is intended to supplement first-aid treatment. Due to widely varying conditions HAWS cannot guarantee that the use of this emergency equipment will prevent serious injury or the aggravation of existing or prior injuries.

NO OTHER WARRANTIES EXPRESSED OR IMPLIED ARE AUTHORIZED, PROVIDED OR GIVEN BY HAWS.

SHOULD YOU EXPERIENCE DIFFICULTY WITH THE INSTALLATION OF THIS MODEL, PLEASE CALL:

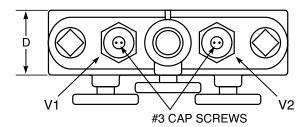

1-800-766-5612

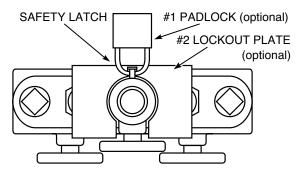
FOR PARTS CALL:

1-800-758-9378

(U.S.A. AND CANADA ONLY) MONDAY-THURSDAY: 6:00 A.M. – 4:00 P.M. PST FRIDAY: 6:00 A.M – 1:00 P.M. PST

Model 9202


Caution: When maintaining and adjusting the mixing valve, the delivered flushing fluid temperature shall be 60°F (15°C) to 95°F (35°C). In circumstances where chemical reaction is accelerated by flushing fluid temperature, a medical advisor should be consulted for the optimum temperature for each application.


Setting the Mixing Valve

Caution: When maintaining and adjusting the mixing valve, all fixtures should be isolated from use. We recommend that you work safely at all times and in a manner consistent with the OSHA Lock/Tagout standard, 29 CFR 1910.147 and other applicable standards.

This mixing valve has been set at the factory to deliver 85°F outlet flow. Should the valve require adjustment, or an application require a different set temperature, proceed as follows:

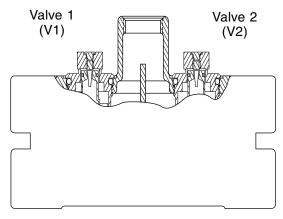
1. Contact the proper medical and safety authorities to determine correct water temperature for the specific application.

DIMENSIONS:

Α	В	С	D	
11"	9″	8″	41/4"	

CAPACITIES

Pressure Drop PSI	5	10	20	30	45
Tempered Flow	25	35	50	60	72
Cold Water Bypass	14	20	28	40	45


Note: Valve must be installed with check valves. If shut off valves are installed in the shower line for maintenance purposes, provisions shall be made to prevent unauthorized shut off.

- 2. If the valve is outfitted with a padlock #1 and lockout plate #2, unlock and remove.
- 3. Use a spanner wrench to remove the tamper-resistant cap screws #3.
- 4. Create a draw on the mixing valve by opening a downstream shower fixture.

- 5. Insert a 5/32" allen key into the cap opening of valve 1 (V1) and seat in the adjustment screw (not shown). Set the outlet temperature by turning the adjustment screw-clockwise to reduce temperature, counterclockwise to increase temperature. Use thermometer (T1) to measure the outlet temperature.
- 6. Adjust valve 2 (V2) using the same procedure used to adjust valve 1 (V1).
- 7. Examine thermometers T1 and T2. Valve 1 and valve 2 should be set to the same temperature and the outlet temperature should be 85°F or as specified for your application. Adjust if necessary.
- 8. Replace cap screws #3, lockout plate #2 and padlock #1.

Testing the Mixing Valve

The mixing valve and the emergency fixtures it serves should be tested weekly for proper operation.

Valve temperature test procedure is as follows:

- Activate shower fixtures to observe and record the temperature of the thermometers T1, T2, and T3. The valve is functioning properly if the T1 and T2 temperatures are equal and T3 is at the proper outlet temperature. If the temperature of thermometers T1 and T2 are not equal, readjust the mixing valve according to the section "Setting the Mixing Valve." Slight variations between the valve set temperatures and the outlet temperatures may occur.
- 2. Observe the flow from the emergency fixtures to ensure an adequate flow of water.

In addition to testing for proper temperature, the cold water by-pass and hot water shut down features of the mixing valve should be tested weekly.

The test procedure is as follows:

1. Test valve temperature as described in Step 1 and Step 2 above.

- 2. Shut off the hot water supply to the mixing valve. Observe the outlet flow from the emergency fixtures to ensure an adequate flow of cold water. A slight drop in flow may occur after shutting down the hot water supply to the mixing valve; however, the drop should be minimal and for a short duration.
- Open the hot water supply to the mixing valve. Thermometers T1 and T2 should return to their set temperatures and T3 to the proper outlet temperature.
- 4. Shut off the cold water supply to the mixing valve. The flow of water should shut down rapidly.
- 5. Open the cold water supply. Thermometers T1 and T2 should return to their set temperatures and T3 to the proper outlet temperature.

Note: Thermometers T1, T2, and T3 should be checked at least every six months.

Replacing a Thermostat Cartridge

The thermostat replacement procedure is as follows:

NOTE: We recommend that you work safely at all times and in a manner consistent with the OSHA Lock/Tagout standard, 29 CFR 1910.147 and other applicable standards.

- 1. Shut off the hot water supply and cold water supply to the mixing valve.
- 2. Unscrew valve V1 or V2 (depending on which valve is not operating properly) and install a new thermostat cartridge assembly.
- Open the hot water supply and the cold water supply to the mixing valve. Check the temperature to see if the replacement cartridge is operating correctly. If the temperature requires adjustment refer to the section "Setting the Mixing Valve."

Operating Principle

The Mixing Valve is made of two independent thermostats housed in a single casting. The twin thermostatic cartridges respond independently to incoming hot and cold water temperatures and provide backup protection against element failure. If one element fails, the other should continue to function properly. If only one element is operating the valve will experience a decrease in outlet temperature (T3). For this reason the Valve requires testing and maintenance on a regular basis. In the event of element failure, the cartridge will provide full cold water flow. The resulting temperature difference between the two valves will be reflected by T1 and T2.

Installation

After installing the mixing valve, be sure to flush the system thoroughly. We recommend isolation and check valves for proper maintenance.

Typical Installation Figure 1

When installed at or near the water heater and without a recirculation system:

Install the valve as shown in *Figure 1* with the mixing valve positioned below the hot water tank or heater. If this is not possible, pipe in a heat trap as shown.

Typical Installation Figure 2

When installed away from the water heater with a recirculating pump on the hot water supply line:

Note: If the valve is installed 20 feet or more from the water heater, it is important to recirculate the hot water supply to the mixing valve.

Install the mixing valve as shown in *Figure 2*. The non-circulated loop should be limited to 10 feet and must be flushed periodically.

Caution: The cold water line must be installed so that it is not affected by excessively hot ambient temperatures. An example of hot ambient temperature is a long run of pipe exposed to direct sunlight. Cold water pipe installed in the ceilings of boiler rooms or rooms that increase ambient temperature require a recirculating pump.

Caution: When maintaining and adjusting the mixing valve, the delivered flushing fluid temperature shall be 60°F (15°C) to 95°F (35°C). In circumstances where chemical reaction is accelerated by flushing fluid temperature, a medical advisor should be consulted for the optimum temperature for each application.

Note: Gallon per minute ratings may vary depending upon incoming water temperatures and pressures. Hot and cold water inlet pressures must be equal.

Maximum Inlet Pressure: 125 PSI.

Recommended Supply Pressure: 65 PSI.

Recommended Inlet Temperature: 120°F.*

*When supplying 140°F or greater, additional outlet controls should be used.

Figure 1

Typical installation. Valve must be installed with check valves.

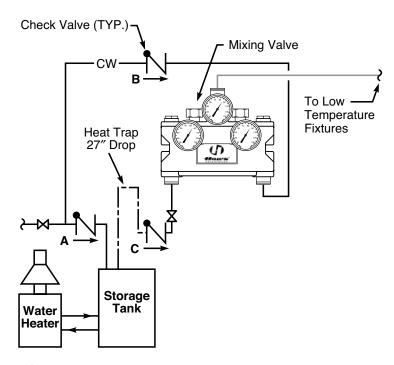
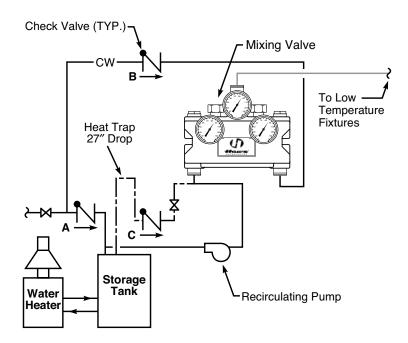
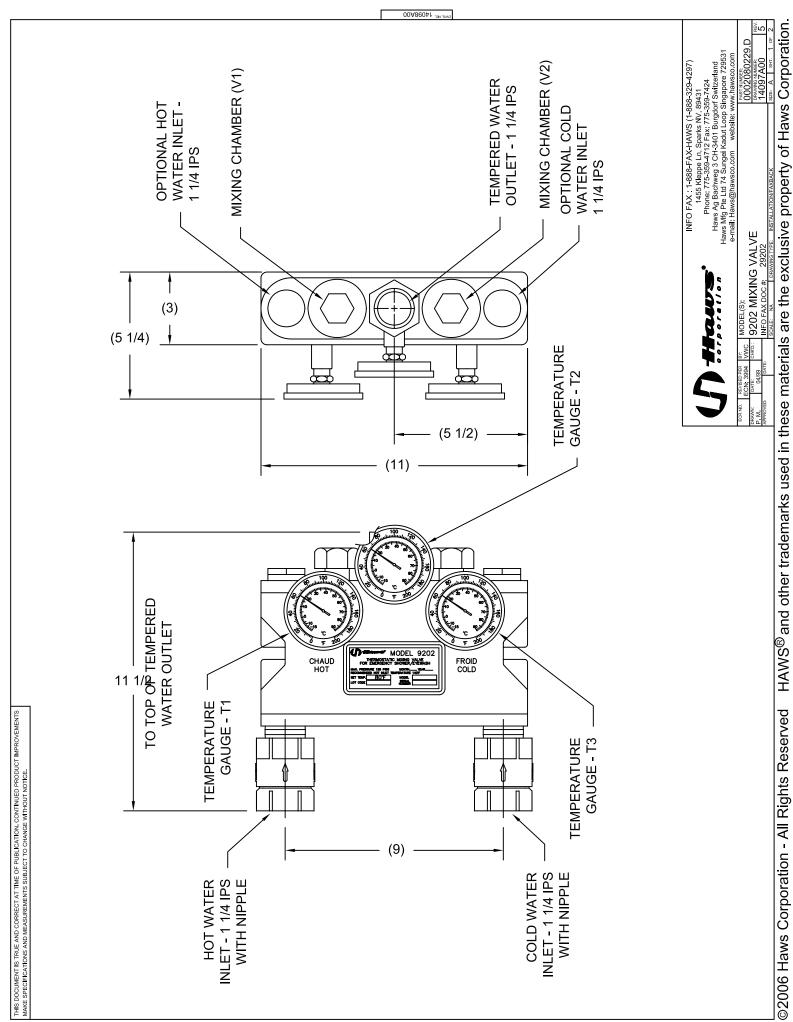



Figure 2
Typical recirculating installation. Valve must be installed with check valves.




Test Record Location

	Date	T1	T2	Т3		Date	T1	T2	Т3
	Jan					July			
	Feb				YEAR	Aug			
	March					Sept			
	April					Oct			
	May					Nov			
	June					Dec			
~	July					Jan			
YEAR	Aug					Feb			
Ϋ́E	Sept					March			
	Oct					April			
	Nov				YEAR	May			
	Dec					June			
	Jan					July			
	Feb					Aug			
	March					Sept			
	April					Oct			
	May					Nov			
	June					Dec			
~	July					Jan			
YEAR	Aug					Feb			
¥	Sept					March			
	Oct					April			
	Nov					May			
	Dec					June			
	Jan				YEAR	July			
	Feb					Aug			
YEAR	March					Sept			
	April					Oct			
	May					Nov			
ΥE	June	_				Dec			

Before you use this chart please make a copy for future testing records.

Caution: When maintaining and adjusting the mixing valve. The delivered flushing fluid temperature shall be 60°F (15°C) to 95°F (35°C). In circumstances where chemical reaction is accelerated by flushing fluid temperature, a medical advisor should be consulted for the optimum temperature for each application.

